Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Cameras are everywhere, and are increasingly coupled with video analytics software that can identify our face, track our mood, recognize what we are doing, and more. We present the results of a 10-day in-situ study designed to understand how people feel about these capabilities, looking both at the extent to which they expect to encounter them as part of their everyday activities and at how comfortable they are with the presence of such technologies across a range of realistic scenarios. Results indicate that while some widespread deployments are expected by many (e.g., surveillance in public spaces), others are not, with some making people feel particularly uncomfortable. Our results further show that individuals’ privacy preferences and expectations are complicated and vary with a number of factors such as the purpose for which footage is captured and analyzed, the particular venue where it is captured, and whom it is shared with. Finally, we discuss the implications of people’s rich and diverse preferences on opt-in or opt-out rights for the collection and use (including sharing) of data associated with these video analytics scenarios as mandated by regulations. Because of the user burden associated with the large number of privacy decisions people could be faced with, we discuss how new types of privacy assistants could possibly be configured to help people manage these decisions.more » « less
-
Abstract Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell‐applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin‐like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine‐modified ELP (ELP‐HYD) and aldehyde/benzaldehyde‐modified polyethylene glycol (PEG‐ALD/PEG‐BZA). The reversible DCC crosslinks in ELP‐PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast‐relaxing or slow‐relaxing hydrogels with a range of stiffness (500–3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two‐dimensional substrates, on which ECs exhibited greater cell spreading on fast‐relaxing hydrogels up through 3 days, compared with slow‐relaxing hydrogels at the same stiffness. In three‐dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast‐relaxing, low‐stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast‐relaxing, low‐stiffness hydrogel produced significantly more vascularization compared with the slow‐relaxing, low‐stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast‐relaxing, low‐stiffness hydrogels supported the highest capillary density in vivo.more » « less
An official website of the United States government

Full Text Available